Environmental Data Collection, Storage, Evaluation and Dissemination

The Regional State of Play

Stephen Swabey, Manager Environmental Science

Environmental Data for Precise, Accurate, Timely Decision-Making

- Environmental data underpin decision-making in environmental, economic, cultural and social domains
 - Regional councils are tasked by s.35 of the RMA 1991 to monitor the state of the environment and report at least every 5 years
 - Consent monitoring, compliance investigations and regional plan implementation monitoring all produce environmental data
- Continuous improvements in instrumentation technology, data management, and data presentation techniques have made these tasks easier – and more complex

Instrumentation Technology Improvements

Data used to be collected by regions mostly by direct observation, or by water sampling.
Major exceptions were water level, temperature, turbidity, and climate stations.

- Data now are collected more frequently, for more parameters, in more locations:
 - Continuous (ie, seconds to minutes) parameter monitoring now also includes temperature, conductivity, dissolved oxygen, water pressure, nutrients
 - High spatial discretisation eg -LiDAR/LADS topographic data; aerial/satellite data for wide range of applications

Resource Consents and Consent Conditions

Greater resource use leads to more resource consents & more complex monitoring conditions

Data Collection Techniques

- Historically, SoE and Compliance data were collected by direct observation or paper charts, later loggers
- Now, data usually logged locally, and/or telemetered, including to HBRC
- Telemetry was through landline, radio, then cellphone. Now satellite, Internet of Things and LoRa (long range) networks are new options.
- Instant availability allows more responsive decision making

NZ Environmental Reporting:

MfE's Key dates...

Data Management Techniques

- Historically, data were managed using paper, spreadsheets and bespoke databases
- Now, shared relational databases common, 13/17 regional councils using Hilltop; IRIS common
- Database sizes have increased logarithmically driven by new sensors, new domain monitoring and increased frequency of data collection
- Eg, LiDAR data can be 2 Tb per 1000 km² of data to LINZ-standard. This requires innovative data cataloguing and retrieval approaches to be effectively used.
- National-level data aggregation projects like LAWA now occur

Data Evaluation

- Many councils now separate data collection teams from data evaluation/analysis/reporting teams
- Evaluation includes:
 - Data quality coding NEMS key here
 - Censoring data
 - Analysing state and trends in the data
 - Preparing data for publication/dissemination
- Semi-automated approaches now common, eg R scripting

Data Dissemination

Reporting formats include:

- Raw data web services
- Presented data on websites
- Slightly processed data on LAWA website

<page-header><page-header><text><section-header>

- State of the Environment state and trend reporting to a typical formula
- Plan-change related reporting, which is more in-depth and interpretative

Real-Time Data Aggregation/Presentation

More Data is Good, Right?

Not always!

- Data obtained have to be representative of the system under investigation (and they may ONLY be representative in that context)
- Data sampling rates have to detect signals, while dealing with noise
- But, more data = more work, particularly in QA, storage and analysis...
- and, systems are not static, so detecting change must be considered too

However, the risk is...

